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Abstract 
 

This paper is concerned with the evaluation of the performance of the normality tests to ensure the validity of the 

t-statistics used for assessing significance of regressors in a regression model. For this purpose, we have 

explored 40 distributions to find the most damaging distribution on the t-statistic. Power comparisons are 

conducted to find the best performing test against these distributions. It is found that Anderson-Darling statistic is 

the best option among the five normality tests, Jarque-Bera, Shapiro-Francia, D’Agostino & Pearson, Anderson-

Darling & Lilliefors. 
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1. Introduction 
 

The normality of error terms is a basic assumption of the linear regression model. Most of the inferential 

procedures currently used are based on this assumption (Bartolucci & Scaccia, 2005). Zaman et al. (2001) give 

several examples of published regression results where testing reveals lack of normality of errors, and this results 

changes the findings of these papers. Thus, diagnostic tests for normality are important for validating inferences 

made from regression models (Onder & Zaman, 2003). Several such tests have been devised (see, for example 

Geary, 1947; Hogg, 1972; D’Agostino & Pearson, 1973; Pearson et al., 1977; Jarque and Bera, 1987; Urzua, 

1996; Cho & Im, 2002, Bonett & Seier, 2002; Bry et. al., 2004; Onder and Zaman, 2005, Gel et. al., 2007). 

Availability of such a large number of normality tests has generated a large number of simulation studies to find a 

best performing test (see, for example Shapiro et al., (1968); Pearson et al., (1977); Thadewald et al., (2004) and 

Yazici & Yolacan (2007). However, normality tests are based on different characteristics of the normal 

distribution and the power of these tests differs depending on the nature of non-normality (Seier, 2002).  
 

A test which performs well for certain types of alternatives may perform poorly for others (see, Shapiro et. al., 

1968 Thadewald & Büning, 2004, Yazici & Yolacan, 2007 for several examples). Because of the vast variety of 

alternatives to normality, no test can be most powerful against all alternatives at the same time. The aim of this 

paper is to evaluate performance of normality tests by focusing on the purpose of testing.  In regression model, 

one important goal of testing normality is to make sure that our t-statistic is giving us the right message (i.e. 

whether the independent variable is a significant explanatory variable or not?). Similarly there are many other 

goals such as forecast encompassing, general validity of confidence intervals, inference, etc. By focusing on a 

goal one may be able to find a best test for that goal. Different goals may lead to different tests being optimal. 

This idea appears to be new in the sense that existing literature compare the performance of the normality tests 

without specifying goals, however it is impossible to find a best performing test against all alternatives. In this 

article, our focus is on t-statistics but many other goals could also be used.  
 

2. Distributions which Damage the t-statistic 
 

To protect t-statistic in the best way, we should know how much a distribution can damage our t-statistic. We 

used the asymptotic expansion of T by Yanagihara, (2003) to calculate how much a distribution can damage the t-

statistic. So, based on the probability formula: 

��� ≤ �� = �	��� − 2�
�ℎ �	��� ��� + �� + �� + ��� + ����

ℎ + 2 + ����
�ℎ + 2��ℎ + 4�� + ������ 

                                                           
*
 This Paper has been presented at the Far Eastern and South Asian Meeting of the Econometric Society 

(FEMES-2008), Singapore Management University, Singapore. 



The Special Issue on Behavioral and Social Science           © Centre for Promoting Ideas, USA           www.ijbssnet.com                                                                   

116 

 

where n is number of observation, h is number of restriction, �	��� is the distribution function and �	��� is the 

density function of a central chi-squared distribution with h degrees of freedom and the coefficients �� are given 

in Yanagihara (2003, p.234). 

By using this asymptotic expansion formula, we calculated the following deviations:  
 

DEVIATION = P( T ≤  x | εt i.i.d Normal ) - P( T ≤  x | εt i.i.d K ) 
 

where, K is any i.i.d non-normal distribution. K is a less damaging distribution if the deviation is small, and K is a 

more damaging distribution if the deviation is large. If the errors are exactly normal, deviation will be zero. 
 

Table: 1 

Deviation from normal probabilities 
 

Distributions n=30  n=50  n=100  

 Probability Deviations Probability Deviations Probability Deviations 

Normal(0,1) 0.9478 ------ 0.9489 ------- 0.9497 ------ 

Chi
2
(2) 0.9400 0.0078 0.0126 0.0050 0.9472 0.0025 

Gamma(0.05,1) 0.7820 0.1658 0.8505 0.0984 0.9040 0.0457 

Gamma(0.1,1) 0.8721 0.0757 0.8977 0.0512 0.9290 0.0207 

Beta(2,0.05) 0.9035 0.0443 0.9212 0.0277 0.9370 0.0127 

Beta(5,0.05) 0.8643 0.0835 0.8963 0.0526 0.9237 0.0260 

Logn(1,1.1) 0.7989 0.1489 0.8541 0.0948 0.9051 0.0446 

Logn(1,1.3) 0.5728 0.3750 0.7100 0.2389 0.8374 0.1123 

Exp(2) 0.9396 0.0082 0.9437 0.0052 0.9473 0.0024 

Weibull(0.5,0.5) 0.8373 0.1105 0.8787 0.0702 0.9168 0.0329 

NCt(5,5) 0.9221 0.0257 0.9364 0.0125 0.9386 0.0092 
 

In this study, 40 distributions have been analyzed which cover almost all the distributions used in the major power 

studies done so far in the literature. Among these, the most damaging ones appear to be the lognormal 

distributions, as shown in Table 1 (Results for the other thirty distributions are not reported here as they have very 

small deviations). The tests we have chosen are the most representative of their respective class of tests. 

Test Class of Test 

Anderson-Darling (A
2
) & Lilliefors (L) ECDF 

Jarque-Bera (JB) & D’Agostino & Pearson (K
2
) Moment 

Shapiro-Francia (SF) Correlation/Regression 

 

We have used a fixed set of three regressors that is, we set ��� = 1�� = 1,2, … ,  � and generated ��& ��from a 

standard normal distribution. Note that the specific values of the means and variances of these regressors have no 

effect on the simulation results. This invariance property follows from the fact that, for a linear model with 

regressor matrix X the ordinary least-squares residuals are the same as those of a linear model with regressor 

matrix XR, where R is any # × # nonsingular matrix of constants (Weisberg, 1980, p.20)
†
. Furthermore, the 

design matrix has little effect on the ranking of the tests (Dufour, 1998).  

Our study shows that our concept is valid. We are able to pick out a unique best test from among the numerous 

alternatives, by finding the one which works best for the ‘least favorable’ or most damaging distribution. It is 

theoretically possible that the best test may differ for different sets of regressors. Based on the methodology used 

here, it would be possible to find the least favorable distribution, and the best test, for each fixed regressor set. 

The question of whether the best test is invariant to the regressors, and many others posed by this approach, are 

being explored further. 

 
 

                                                           
†
 See Jarque & Bera, 1987 
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3. Simulation Study 
 

In the first part of the simulation study, we have calculated the finite sample critical values for all five tests in our 

study for sample size n=30, 50 & 100 and for nominal level α = 0.01, 0.05 & 0.1 by using 100, 000 Monte Carlo 

replications.  
 

In second part, we have performed the normality tests on the most damaging distributions; Lognormal (1, 1.3) & 

Weibull (0.5, 0.5). Power calculations are based on 10,000 Monte Carlo replications.  Table 2 summarizes the 

empirical powers of the tests for sample size n = 30, 50 & 100 at α = 0.01, 0.05 & 0.1. 
 

Table: 2 
Power results against the most damaging distributions 

Distribution Test N α =0.01 α =0.05 α =0.1 

Logn(1,1.3) A
2
 30 0.9931 0.9988 0.9996 

  50 0.9999 1 1 

  100 1 1 1 

 SF 30 0.9926 0.9989 0.9993 

  50 1 1 1 

  100 1 1 1 

 K
2
 30 0.9194 0.9757 0.9914 

  50 0.9944 0.9996 1 

  100 1 1 1 

 JB 30 0.9198 0.9937 0.9994 

  50 0.9939 1 1 

  100 1 1 1 

 L 30 0.9527 0.9894 0.9961 

  50 0.9989 0.9999 0.9999 

  100 1 1 1 

Weibull(0.5,0.5) A
2
 30 1 1 1 

  50 1 1 1 

  100 1 1 1 

 

 SF 30 0.9996 1 1 

  50 1 1 1 

  100 1 1 1 

 K
2
 30 0.9558 0.9914 0.9992 

  50 0.9991 1 1 

  100 1 1 1 

 JB 30 0.9548 0.9991 1 

  50 0.9993 1 1 

  100 1 1 1 

 L 30 0.9957 0.9995 0.9999 

  50 1 1 1 

  100 1 1 1 
 

Power study of the most damaging distribution, Lognormal (1, 1.3), sheds light on the superiority of the tests. A
2
-

test is the clear winner, especially from small to moderate sample sizes and for all significance levels.Power 

comparison results against the Weibull (0.5, 0.5) alternative distribution also confirm the superiority of A
2
-test to 

all other tests in our study.  
 

Jarque-Bera (JB-test) is the most popular and widely use test in the field of economics but our results suggests the 

overall superiority of Anderson-Darling (A
2
-test) to Jarque-Bera (JB-test). So, A

2
-test is recommended for use if 

the goal is to protect the t-statistic.  
 

4. Conclusion 

We have explored 40 distributions and calculated how much they can be damaging for t-statistic. Lognormal (1, 

1.3) is the worst distribution for t-statistic among the 40 distributions in our study with 37.5% deviation. 
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Among the tests studied, Anderson-Darling test is the best choice not only against this distribution but also for all 

other distributions in question to ensure the validity of inferences based on t-statistic. This study has been 

confined to tests and alternative distributions appearing in the literature, but the approach can easily be 

generalized.  
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